Let's Build a Simple Database
제3 장 - 메모리 내, 추가 전용, 단일 테이블 데이터베이스

이 글은 Connor StackLet’s Build a Simple Database를 번역한 글입니다.

알림 : 부족한 실력 탓에 잘못된 번역, 부자연스러운 문장이 있을 수 있습니다. 해당 문제에 대한 의견을 댓글이나 GitHub 저장소 Pull Request를 통해 제안해 주시면 감사한 마음으로 적극 반영하도록 하겠습니다. 감사합니다.


데이터베이스에 많은 제한을 두어, 작은 규모로 시작해 보겠습니다. 우선, 다음과 같은 제한을 두겠습니다.

하드 코딩 된 테이블은 사용자를 저장할 것이며, 형태는 다음과 같습니다.

column type
id integer
username varchar(32)
email varchar(255)

단순한 스키마이지만, 여러 데이터 타입과 다양한 크기의 텍스트 데이터 타입을 지원합니다.

insert 문은 다음과 같습니다.

insert 1 cstack foo@bar.com

즉, 입력 인자들을 파싱 할 수 있도록 prepare_statement 함수를 개선해야 합니다.

   if (strncmp(input_buffer->buffer, "insert", 6) == 0) {
     statement->type = STATEMENT_INSERT;
+    int args_assigned = sscanf(
+        input_buffer->buffer, "insert %d %s %s", &(statement->row_to_insert.id),
+        statement->row_to_insert.username, statement->row_to_insert.email);
+    if (args_assigned < 3) {
+      return PREPARE_SYNTAX_ERROR;
+    }
     return PREPARE_SUCCESS;
   }
   if (strcmp(input_buffer->buffer, "select") == 0) {

파싱 된 입력 인자들은 새로운 Row 데이터 구조체 형태로 statement 객체 내부에 저장됩니다.

+#define COLUMN_USERNAME_SIZE 32
+#define COLUMN_EMAIL_SIZE 255
+typedef struct {
+  uint32_t id;
+  char username[COLUMN_USERNAME_SIZE];
+  char email[COLUMN_EMAIL_SIZE];
+} Row;
+
 typedef struct {
   StatementType type;
+  Row row_to_insert;  // insert 문에서만 사용됩니다.
 } Statement;

이제 입력 데이터를 테이블을 표현하는 데이터 구조로 복사할 필요가 있습니다. SQLite의 경우 빠른 조회, 삽입 및 삭제를 위해 B-트리를 사용합니다. 우리는 좀 더 간단한 데이터 구조를 사용하여 진행하겠습니다. B-트리와 마찬가지로, 행을 페이지로 그룹화하지만, 페이지들을 트리 형태가 아닌 배열 형태로 처리하겠습니다.

계획은 다음과 같습니다.

먼저 행의 촘촘한 표현 형태를 정의합니다.

+#define size_of_attribute(Struct, Attribute) sizeof(((Struct*)0)->Attribute)
+
+const uint32_t ID_SIZE = size_of_attribute(Row, id);
+const uint32_t USERNAME_SIZE = size_of_attribute(Row, username);
+const uint32_t EMAIL_SIZE = size_of_attribute(Row, email);
+const uint32_t ID_OFFSET = 0;
+const uint32_t USERNAME_OFFSET = ID_OFFSET + ID_SIZE;
+const uint32_t EMAIL_OFFSET = USERNAME_OFFSET + USERNAME_SIZE;
+const uint32_t ROW_SIZE = ID_SIZE + USERNAME_SIZE + EMAIL_SIZE;

즉, 직렬화된 행의 형태는 다음과 같습니다.

column size (bytes) offset
id 4 0
username 32 4
email 255 36
total 291  

촘촘한 표현 형태로 변환하거나 재변환하는 코드도 필요합니다.

+void serialize_row(Row* source, void* destination) {
+  memcpy(destination + ID_OFFSET, &(source->id), ID_SIZE);
+  memcpy(destination + USERNAME_OFFSET, &(source->username), USERNAME_SIZE);
+  memcpy(destination + EMAIL_OFFSET, &(source->email), EMAIL_SIZE);
+}
+
+void deserialize_row(void* source, Row* destination) {
+  memcpy(&(destination->id), source + ID_OFFSET, ID_SIZE);
+  memcpy(&(destination->username), source + USERNAME_OFFSET, USERNAME_SIZE);
+  memcpy(&(destination->email), source + EMAIL_OFFSET, EMAIL_SIZE);
+}

다음은 행의 페이지들을 가리키고 행의 수를 추적관리하는 Table 구조체입니다.

+const uint32_t PAGE_SIZE = 4096;
+#define TABLE_MAX_PAGES 100
+const uint32_t ROWS_PER_PAGE = PAGE_SIZE / ROW_SIZE;
+const uint32_t TABLE_MAX_ROWS = ROWS_PER_PAGE * TABLE_MAX_PAGES;
+
+typedef struct {
+  uint32_t num_rows;
+  void* pages[TABLE_MAX_PAGES];
+} Table;

페이지 크기는 대부분의 컴퓨터 구조들이 가상 메모리 시스템에서 사용하는 것과 같은 4 킬로바이트로 만들었습니다. 이점은 우리 데이터베이스의 한 페이지가 운영체제의 한 페이지에 해당함을 의미합니다. 따라서, 운영체제는 페이지를 분할하지 않고 페이지를 메모리 내외로 이동시킬 것입니다.

100페이지 할당 제한은 임의로 설정 한 것입니다. 트리구조로 전환하게 되면 데이터베이스의 최대 크기는 파일 최대 크기에 의해서만 제한될 것입니다. (한 번에 메모리에 보관하는 페이지 수는 제한이 될 것입니다.)

행은 페이지 경계를 넘지 않아야 합니다. 페이지가 메모리에 연속적으로 존재하지 않기 때문에, 행을 좀 더 쉽게 읽고 쓸 수 있게 합니다.

말이 나온 김에, 다음은 읽고 쓸 행의 메모리 위치를 찾는 방법입니다.

+void* row_slot(Table* table, uint32_t row_num) {
+  uint32_t page_num = row_num / ROWS_PER_PAGE;
+  void* page = table->pages[page_num];
+  if (page == NULL) {
+    // 페이지에 접근하는 경우 메모리 할당
+    page = table->pages[page_num] = malloc(PAGE_SIZE);
+  }
+  uint32_t row_offset = row_num % ROWS_PER_PAGE;
+  uint32_t byte_offset = row_offset * ROW_SIZE;
+  return page + byte_offset;
+}

이제 execute_statement 함수에서 우리의 테이블 구조를 읽고 쓰도록 만들 수 있습니다.

-void execute_statement(Statement* statement) {
+ExecuteResult execute_insert(Statement* statement, Table* table) {
+  if (table->num_rows >= TABLE_MAX_ROWS) {
+    return EXECUTE_TABLE_FULL;
+  }
+
+  Row* row_to_insert = &(statement->row_to_insert);
+
+  serialize_row(row_to_insert, row_slot(table, table->num_rows));
+  table->num_rows += 1;
+
+  return EXECUTE_SUCCESS;
+}
+
+ExecuteResult execute_select(Statement* statement, Table* table) {
+  Row row;
+  for (uint32_t i = 0; i < table->num_rows; i++) {
+    deserialize_row(row_slot(table, i), &row);
+    print_row(&row);
+  }
+  return EXECUTE_SUCCESS;
+}
+
+ExecuteResult execute_statement(Statement* statement, Table* table) {
   switch (statement->type) {
     case (STATEMENT_INSERT):
-      printf("This is where we would do an insert.\n");
-      break;
+      return execute_insert(statement, table);
     case (STATEMENT_SELECT):
-      printf("This is where we would do a select.\n");
-      break;
+      return execute_select(statement, table);
   }
 }

마지막으로 테이블 초기화 및 메모리 해제 함수를 생성하고 몇 가지 에러 처리를 합니다.

+ Table* new_table() {
+  Table* table = malloc(sizeof(Table));
+  table->num_rows = 0;
+  for (uint32_t i = 0; i < TABLE_MAX_PAGES; i++) {
+     table->pages[i] = NULL;
+  }
+  return table;
+}
+
+void free_table(Table* table) {
+    for (int i = 0; table->pages[i]; i++) {
+	free(table->pages[i]);
+    }
+    free(table);
+}
 int main(int argc, char* argv[]) {
+  Table* table = new_table();
   InputBuffer* input_buffer = new_input_buffer();
   while (true) {
     print_prompt();
@@ -105,13 +203,22 @@ int main(int argc, char* argv[]) {
     switch (prepare_statement(input_buffer, &statement)) {
       case (PREPARE_SUCCESS):
         break;
+      case (PREPARE_SYNTAX_ERROR):
+        printf("Syntax error. Could not parse statement.\n");
+        continue;
       case (PREPARE_UNRECOGNIZED_STATEMENT):
         printf("Unrecognized keyword at start of '%s'.\n",
                input_buffer->buffer);
         continue;
     }

-    execute_statement(&statement);
-    printf("Executed.\n");
+    switch (execute_statement(&statement, table)) {
+      case (EXECUTE_SUCCESS):
+        printf("Executed.\n");
+        break;
+      case (EXECUTE_TABLE_FULL):
+        printf("Error: Table full.\n");
+        break;
+    }
   }
 }

변경을 통해 데이터베이스에 데이터를 저장할 수 있게 되었습니다!

~ ./db
db > insert 1 cstack foo@bar.com
Executed.
db > insert 2 bob bob@example.com
Executed.
db > select
(1, cstack, foo@bar.com)
(2, bob, bob@example.com)
Executed.
db > insert foo bar 1
Syntax error. Could not parse statement.
db > .exit
~

이쯤에서, 테스트를 수행해보는 것이 좋을 것 같습니다. 여기서 테스트를 수행하는 것에는 몇 가지 이유가 있습니다.

다음 장에서 이 사항들을 다루어 보겠습니다. 지금까지 변경된 부분은 다음과 같습니다.

@@ -2,6 +2,7 @@
 #include <stdio.h>
 #include <stdlib.h>
 #include <string.h>
+#include <stdint.h>

 typedef struct {
   char* buffer;
@@ -10,6 +11,105 @@ typedef struct {
 } InputBuffer;

+typedef enum { EXECUTE_SUCCESS, EXECUTE_TABLE_FULL } ExecuteResult;
+
+typedef enum {
+  META_COMMAND_SUCCESS,
+  META_COMMAND_UNRECOGNIZED_COMMAND
+} MetaCommandResult;
+
+typedef enum {
+  PREPARE_SUCCESS,
+  PREPARE_SYNTAX_ERROR,
+  PREPARE_UNRECOGNIZED_STATEMENT
+ } PrepareResult;
+
+typedef enum { STATEMENT_INSERT, STATEMENT_SELECT } StatementType;
+
+#define COLUMN_USERNAME_SIZE 32
+#define COLUMN_EMAIL_SIZE 255
+typedef struct {
+  uint32_t id;
+  char username[COLUMN_USERNAME_SIZE];
+  char email[COLUMN_EMAIL_SIZE];
+} Row;
+
+typedef struct {
+  StatementType type;
+  Row row_to_insert; // insert 문에서만 사용됩니다.
+} Statement;
+
+#define size_of_attribute(Struct, Attribute) sizeof(((Struct*)0)->Attribute)
+
+const uint32_t ID_SIZE = size_of_attribute(Row, id);
+const uint32_t USERNAME_SIZE = size_of_attribute(Row, username);
+const uint32_t EMAIL_SIZE = size_of_attribute(Row, email);
+const uint32_t ID_OFFSET = 0;
+const uint32_t USERNAME_OFFSET = ID_OFFSET + ID_SIZE;
+const uint32_t EMAIL_OFFSET = USERNAME_OFFSET + USERNAME_SIZE;
+const uint32_t ROW_SIZE = ID_SIZE + USERNAME_SIZE + EMAIL_SIZE;
+
+const uint32_t PAGE_SIZE = 4096;
+#define TABLE_MAX_PAGES 100
+const uint32_t ROWS_PER_PAGE = PAGE_SIZE / ROW_SIZE;
+const uint32_t TABLE_MAX_ROWS = ROWS_PER_PAGE * TABLE_MAX_PAGES;
+
+typedef struct {
+  uint32_t num_rows;
+  void* pages[TABLE_MAX_PAGES];
+} Table;
+
+void print_row(Row* row) {
+  printf("(%d, %s, %s)\n", row->id, row->username, row->email);
+}
+
+void serialize_row(Row* source, void* destination) {
+  memcpy(destination + ID_OFFSET, &(source->id), ID_SIZE);
+  memcpy(destination + USERNAME_OFFSET, &(source->username), USERNAME_SIZE);
+  memcpy(destination + EMAIL_OFFSET, &(source->email), EMAIL_SIZE);
+}
+
+void deserialize_row(void *source, Row* destination) {
+  memcpy(&(destination->id), source + ID_OFFSET, ID_SIZE);
+  memcpy(&(destination->username), source + USERNAME_OFFSET, USERNAME_SIZE);
+  memcpy(&(destination->email), source + EMAIL_OFFSET, EMAIL_SIZE);
+}
+
+void* row_slot(Table* table, uint32_t row_num) {
+  uint32_t page_num = row_num / ROWS_PER_PAGE;
+  void *page = table->pages[page_num];
+  if (page == NULL) {
+     // 페이지에 접근하는 경우 메모리 할당
+     page = table->pages[page_num] = malloc(PAGE_SIZE);
+  }
+  uint32_t row_offset = row_num % ROWS_PER_PAGE;
+  uint32_t byte_offset = row_offset * ROW_SIZE;
+  return page + byte_offset;
+}
+
+Table* new_table() {
+  Table* table = malloc(sizeof(Table));
+  table->num_rows = 0;
+  for (uint32_t i = 0; i < TABLE_MAX_PAGES; i++) {
+     table->pages[i] = NULL;
+  }
+  return table;
+}
+
+void free_table(Table* table) {
+  for (int i = 0; table->pages[i]; i++) {
+     free(table->pages[i]);
+  }
+  free(table);
+}
+
 InputBuffer* new_input_buffer() {
   InputBuffer* input_buffer = malloc(sizeof(InputBuffer));
   input_buffer->buffer = NULL;
@@ -40,17 +140,105 @@ void close_input_buffer(InputBuffer* input_buffer) {
     free(input_buffer);
 }

+MetaCommandResult do_meta_command(InputBuffer* input_buffer, Table *table) {
+  if (strcmp(input_buffer->buffer, ".exit") == 0) {
+    close_input_buffer(input_buffer);
+    free_table(table);
+    exit(EXIT_SUCCESS);
+  } else {
+    return META_COMMAND_UNRECOGNIZED_COMMAND;
+  }
+}
+
+PrepareResult prepare_statement(InputBuffer* input_buffer,
+                                Statement* statement) {
+  if (strncmp(input_buffer->buffer, "insert", 6) == 0) {
+    statement->type = STATEMENT_INSERT;
+    int args_assigned = sscanf(
+	input_buffer->buffer, "insert %d %s %s", &(statement->row_to_insert.id),
+	statement->row_to_insert.username, statement->row_to_insert.email
+	);
+    if (args_assigned < 3) {
+	return PREPARE_SYNTAX_ERROR;
+    }
+    return PREPARE_SUCCESS;
+  }
+  if (strcmp(input_buffer->buffer, "select") == 0) {
+    statement->type = STATEMENT_SELECT;
+    return PREPARE_SUCCESS;
+  }
+
+  return PREPARE_UNRECOGNIZED_STATEMENT;
+}
+
+ExecuteResult execute_insert(Statement* statement, Table* table) {
+  if (table->num_rows >= TABLE_MAX_ROWS) {
+     return EXECUTE_TABLE_FULL;
+  }
+
+  Row* row_to_insert = &(statement->row_to_insert);
+
+  serialize_row(row_to_insert, row_slot(table, table->num_rows));
+  table->num_rows += 1;
+
+  return EXECUTE_SUCCESS;
+}
+
+ExecuteResult execute_select(Statement* statement, Table* table) {
+  Row row;
+  for (uint32_t i = 0; i < table->num_rows; i++) {
+     deserialize_row(row_slot(table, i), &row);
+     print_row(&row);
+  }
+  return EXECUTE_SUCCESS;
+}
+
+ExecuteResult execute_statement(Statement* statement, Table *table) {
+  switch (statement->type) {
+    case (STATEMENT_INSERT):
+       	return execute_insert(statement, table);
+    case (STATEMENT_SELECT):
+	return execute_select(statement, table);
+  }
+}
+
 int main(int argc, char* argv[]) {
+  Table* table = new_table();
   InputBuffer* input_buffer = new_input_buffer();
   while (true) {
     print_prompt();
     read_input(input_buffer);

-    if (strcmp(input_buffer->buffer, ".exit") == 0) {
-      close_input_buffer(input_buffer);
-      exit(EXIT_SUCCESS);
-    } else {
-      printf("Unrecognized command '%s'.\n", input_buffer->buffer);
+    if (input_buffer->buffer[0] == '.') {
+      switch (do_meta_command(input_buffer, table)) {
+        case (META_COMMAND_SUCCESS):
+          continue;
+        case (META_COMMAND_UNRECOGNIZED_COMMAND):
+          printf("Unrecognized command '%s'\n", input_buffer->buffer);
+          continue;
+      }
+    }
+
+    Statement statement;
+    switch (prepare_statement(input_buffer, &statement)) {
+      case (PREPARE_SUCCESS):
+        break;
+      case (PREPARE_SYNTAX_ERROR):
+	printf("Syntax error. Could not parse statement.\n");
+	continue;
+      case (PREPARE_UNRECOGNIZED_STATEMENT):
+        printf("Unrecognized keyword at start of '%s'.\n",
+               input_buffer->buffer);
+        continue;
+    }
+
+    switch (execute_statement(&statement, table)) {
+	case (EXECUTE_SUCCESS):
+	    printf("Executed.\n");
+	    break;
+	case (EXECUTE_TABLE_FULL):
+	    printf("Error: Table full.\n");
+	    break;
     }
   }
 }

Discussion and feedback